Some classes of analytic functions involving differential subordinations

Sh. Khosravianarab, S.R. Kulkarni, O.P. Ahuja

Department of Mathematics, Pune University, Pune, India
Department of Mathematics, Fergusson College, Pune, India
Department of Mathematical Sciences, Kent State University, 14111 Claridon Troy Road, Burton, Ohio 44021-9500, USA

ARTICLE INFO

Keywords:
Hadamard product (or convolution)
Univalent function
Differential subordinations

ABSTRACT

The main object of this paper is to apply the method of differential subordinations in order to obtain certain properties of some subclasses of analytic functions in the unit disc involving differential subordinations.

1. Introduction and definitions

Let H denote the class of functions analytic in the open unit disc U. For a positive integer n and $a \in \mathbb{C}$, let

$$H[a, n] := \left\{ f \in H : f(z) = a + \sum_{k=n}^{\infty} a_k z^k \right\}$$

and

$$A := \left\{ f \in H : f(z) = z + \sum_{n=2}^{\infty} a_n z^n \right\}.$$

The class $H[a, n]$ has been studied by several researchers; for example, see [3]. Many of the subclasses of A and $H[a, n]$ can be written very neatly in terms of subordination and convolution (or Hadamard products). We recall these definitions.

If $f, g \in H$, then the function f is said to be subordinate to g, written as $f \prec g$ or $f(z) \prec g(z), z \in U$, if there exists a Schwarz function $x \in H$ such that $f(z) = g(x(z))$.

Next, for the functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n,$$

let $f * g$ denote the convolution (or Hadamard product) of f and g defined by

$$(f * g)(z) := \sum_{n=0}^{\infty} a_n b_n z^n \quad (z \in U).$$

Throughout the paper, unless otherwise stated, g will denote a fixed function in H and h will denote an analytic, convex, univalent function on U with $h(0) = 1$ and $\Re(h(z)) > 0$ for all $z \in U$.

For any $\lambda (0 < \lambda \leq 1), $ $z (z > 0)$ and for all $z \in U$, we define the following subclasses of A.

* Corresponding author.

E-mail addresses: shkhosravian@yahoo.com (Sh. Khosravianarab), kulkarni_ferg@yahoo.com (S.R. Kulkarni), oahuja@kent.edu (O.P. Ahuja).
\[\mathcal{S}(g, h, \lambda) := \left\{ f \in \mathcal{A} : \frac{zf + g}'(z) + \lambda z^2(f + g)''(z) < h(z) \right\}, \]
\[\mathcal{F}(g, h, \alpha) := \left\{ f \in \mathcal{A} : \frac{(1 - \alpha)(f + g)(z)}{z} + \alpha z(f + g)'(z) < h(z) \right\}, \]
\[\mathcal{A}(g, h, \alpha) := \left\{ f \in \mathcal{A} : (f + g)(z) + \alpha z(f + g)''(z) < h(z) \right\}. \]

Note that the function \(g(z) = \frac{z}{(1 - z)^2}, c \in \mathbb{R} \), these three classes reduce to the corresponding classes in [3]. Let
\[\mathcal{L}(z) = -\log(1 - z) = \int_0^z \frac{dt}{1 - t} = z + \sum_{n=1}^{\infty} \frac{z^n}{n} \]
for all \(z \in \mathbb{U} \). If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{A} \), then
\[(\mathcal{L} \ast f)(z) = z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n. \quad (1) \]

For \(g := \mathcal{L} \), we define classes
\[\mathcal{G}(h, \lambda) := \mathcal{S}(\mathcal{L}, h, \lambda), \quad 0 \leq \lambda \leq 1, \]
\[\mathcal{F}(h, \alpha) := \mathcal{F}(\mathcal{L}, h, \alpha), \quad \alpha \geq 0, \]
\[\mathcal{A}(h, \alpha) := \mathcal{A}(\mathcal{L}, h, \alpha), \quad \alpha \geq 0. \]

According to (1), by taking derivatives, we find that
\[z(\mathcal{L} \ast f)'(z) = f(z) \quad (2) \]
and
\[z^2(\mathcal{L} \ast f)''(z) = zf'(z) - f(z). \quad (3) \]

In 1981, Miller and Mocanu [1] laid a foundation for the Theory of differential subordinations in the complex plane. In very simple language, a differential subordination in the complex plane is the generalization of a differential inequality on the real line. Later on, several researchers developed many applications and extensions of the theory of differential subordinations. For definitions and works of hundreds of researchers in this field, one may refer to an excellent monograph by Miller and Mocanu [2].

The main object of this paper is to apply the method of the differential subordinations in order to obtain several properties of the six new classes defined in this section.

2. Main lemmas

In view of (2) and (3), we immediately obtain the following characterizations.

Lemma 1

(i) \(f \in \mathcal{G}(h, \lambda) \iff \frac{(1 - \lambda)f(z) + \lambda z^2f''(z)}{(1 - \lambda)f(z) + \lambda zf''(z)} < h(z) \).

(ii) \(f \in \mathcal{F}(h, \alpha) \iff \frac{(1 - \alpha)(f(z) + zf'(z))}{z} < h(z) \).

(iii) \(f \in \mathcal{A}(h, \alpha) \iff \frac{1}{2}[(1 - \alpha)f(z) + \alpha z f'(z)] < h(z) \).

An immediate consequence of Lemma 1(iii) is asserted by following.

Corollary 1

(i) \(f \in \mathcal{A}(h, 1) \iff f'(z) < h(z) \).

(ii) \(f \in \mathcal{A}(h, 0) \iff \frac{f(z)}{z} < h(z) \).

The case \(h(z) = \frac{1 + z}{1 - z} \) of Corollary 1(i), gives

Corollary 2. \(-2\ln(1 - z) - z \in \mathcal{A}(\frac{1 + z}{1 - z}, 1)\).

Lemma 2 [2, p. 81]. Let \(\beta \) and \(\gamma \) be complex numbers with \(\beta \neq 0 \). Also suppose \(h \) is convex in \(\mathbb{U} \), with \(\Re \{\beta h(z) + \gamma\} > 0 \). If \(p \) is analytic in \(\mathbb{U} \) with \(p(0) = h(0) \) then
\[p(z) + \frac{zp'(z)}{p(z) + \gamma} < h(z) \implies p(z) < h(z). \]
Lemma 3 [2, p. 71]. Let \(h \) be convex in \(\mathcal{H} \), with \(h(0) = a, \gamma \neq 0 \) and \(\text{Re}(\gamma) \geq 0 \). If \(p \in \mathcal{H}[a,n] \) and

\[
p(z) + \frac{zp'(z)}{\gamma} < h(z),
\]

then \(p(z) < q(z) < h(z) \), where

\[
q(z) = \frac{\gamma}{n^{2\gamma}} \int_0^z h(t)t^{n-1}dt.
\]

3. Main results

Making use of Lemma 2, we prove the following.

Theorem 1. If \(f, g \in \mathcal{H} \) and \(f \in \mathcal{H}(g, h, \lambda) \), then \(F_\mu(f) \in \mathcal{H}(g, h, \lambda) \), where

\[
F_\mu(f) = \frac{\mu + 1}{z^n} \int_0^z t^{n-1}f(t)dt \quad (\mu \geq 0).
\]

Proof. Let \(f(z) = z + \sum_{n=2}^{\infty} b_n z^n \) and \(g(z) = z + \sum_{n=2}^{\infty} c_n z^n \). Then

\[
F_\mu(f)(z) = z + \sum_{n=2}^{\infty} b_n (\mu + 1) \frac{1}{\mu + n} z^n.
\]

Therefore

\[
(g \ast z(F_\mu(f))^\prime)(z) = z(g \ast F_\mu(f))^\prime(z).
\]

So

\[
(g \ast z(F_\mu(f))^\prime)(z) = z(g \ast F_\mu(f))^\prime(z).
\]

Also it easily follows that

\[
z(F_\mu(f))^\prime(z) + \mu F_\mu(f)(z) = (\mu + 1)f(z).
\]

Thus we can write

\[
(g \ast z(F_\mu(f))^\prime)(z) + \mu(g \ast F_\mu(f))(z) = (\mu + 1)(g \ast f)(z).
\]

By using the relation (4), we have

\[
z(g \ast (F_\mu(f))^\prime)(z) + \mu(g \ast F_\mu(f))(z) = (\mu + 1)(g \ast f)(z).
\]

On differentiating both sides of (5), we have

\[
z(g \ast F_\mu(f))^\prime(z) = (\mu + 1)[(g \ast f)^\prime(z) - (g \ast F_\mu(f))^\prime(z)].
\]

Setting

\[
p(z) = \frac{z(g \ast F_\mu(f))^\prime(z) + \lambda z^2(g \ast F_\mu(f))^\prime(z)}{(1 - \lambda)(g \ast F_\mu(f))(z) + \lambda z(g \ast F_\mu(f))^\prime(z)}
\]

and by using (5) and (6), we obtain

\[
p(z) + \mu = (\mu + 1) \frac{(1 - \lambda)(g \ast f)(z) + \lambda z(g \ast f)^\prime(z)}{(1 - \lambda)(g \ast F_\mu(f))(z) + \lambda z(g \ast F_\mu(f))^\prime(z)}.
\]

Making use of the logarithmic differentiation on both sides of (7) and multiplying the resulting equation by \(z \), we have

\[
p(z) + \frac{zp'(z)}{p(z) + \mu} = \frac{z(f \ast g)^\prime(z) + \lambda z^2(f \ast g)^\prime(z)}{(1 - \lambda)(f \ast g)(z) + \lambda z(f \ast g)^\prime(z)}.
\]

Since \(f \in \mathcal{H}(g, h, \lambda) \), we get

\[
z(f \ast g)^\prime(z) + \lambda z^2(f \ast g)^\prime(z)
\]

\[
(1 - \lambda)(f \ast g)(z) + \lambda z(f \ast g)^\prime(z)
\]

\[
< h(z).
\]

By applying Lemma 2, (8) and (9) it follows that \(p(z) < h(z) \). This proves that \(F_\mu(f) \in \mathcal{H}(g, h, \lambda) \). \(\Box \)
Remark. Theorem 1 is a generalization of the corresponding result in [3, Theorem 2].

Corollary 3. For \(f \in \mathcal{A} \), \(\mathcal{S}(f, h, \lambda) \subset \mathcal{S}(F_{\mu}(f), h, \lambda) \).

Proof. If \(g \in \mathcal{S}(f, h, \lambda) \), then \(f \in \mathcal{S}(g, h, \lambda) \). According to Theorem 1, \(F_{\mu}(f) \in \mathcal{S}(g, h, \lambda) \), or \(g \in \mathcal{S}(F_{\mu}(f), h, \lambda) \). By using Lemma 3, we have

Letting \(g(z) = \mathcal{S}(z) \), Theorem 1 yields

Corollary 4. If \(f \in \mathcal{S}(h, \lambda) \) then \(F_{\mu}(f) \in \mathcal{S}(h, \lambda) \).

Theorem 2. Let \(f, g \in \mathcal{A} \) and \(F_{\mu} \) be an integral operator as defined in Theorem 1. If

\[
F_{\mu}(f) \in \mathcal{S}(g, h, \lambda) \cap \mathcal{A}(g, h, \lambda), \quad \mu \geq 1,
\]
then \(F_{\mu}(f) \in \mathcal{S}(g, q, \lambda) \), where

\[
q(z) = \frac{\mu}{2^\mu} \int_0^z h(t)t^{\mu-1}dt.
\]

Proof. If

\[
p(z) = \frac{(1 - \lambda)(F_{\mu}(f) + g)(z) + \lambda g(F_{\mu}(f) + g)'(z)}{z},
\]
then

\[
p(z) + \frac{z^p(z)}{\mu} + \frac{\mu}{\lambda} \left[(1 - \lambda) \frac{F_{\mu}(f) + g}{z} + \lambda (F_{\mu}(f) + g)'(z) + \frac{1}{\mu} [F_{\mu}(f) + g]'(z) + \lambda z (F_{\mu}(f) + g)''(z) \right].
\]

(10)

Since \(F_{\mu}(f) \in \mathcal{S}(g, h, \lambda) \cap \mathcal{A}(g, h, \lambda) \) and \(h \) is convex function, from (10) we have

\[
p(z) + \frac{z^p(z)}{\mu} < h(z).
\]

By using the Lemma 3, we have

\[
p(z) = \frac{1 - \lambda}{z} (F_{\mu}(f) + g)(z) + \lambda (F_{\mu}(f) + g)'(z) < q(z),
\]

where

\[
q(z) = \frac{\mu}{2^\mu} \int_0^z h(t)t^{\mu-1}dt.
\]

The proof is completed.

Corollary 5. For \(f \in \mathcal{A} \), \(\mathcal{S}(F_{\mu}(f), h, \lambda) \cap \mathcal{A}(F_{\mu}(f), h, \lambda) \subset \mathcal{S}(F_{\mu}(f), q, \lambda) \) where

\[
q(z) = \frac{\mu}{2^\mu} \int_0^z h(t)t^{\mu-1}dt.
\]

Proof. Let \(g \in \mathcal{S}(F_{\mu}(f), h, \lambda) \cap \mathcal{A}(F_{\mu}(f), h, \lambda) \). Then \(F_{\mu}(f) \in \mathcal{S}(g, q, \lambda) \), by Theorem 2.

Letting \(h(z) = \frac{1}{1 + \lambda z} \) and \(\mu = 1 \) in Corollary 5, we get the following corollary.

Corollary 6. \(\mathcal{S}(F_{\mu}(f), \frac{1 + \lambda z}{Bz}, \lambda) \cap \mathcal{A}(F_{\mu}(f), \frac{1 + \lambda z}{Bz}, \lambda) \subset \mathcal{S}(F_{\mu}(f), q, \lambda) \), where \(A \in C, B \in [-1, 0], A \neq B \) and

\[
q(z) = \frac{1}{Bz} \left[\left(1 - \frac{A}{B} \right) \ln(1 + Bz) + Az \right].
\]

We make use of Lemma 3 in the following.

Theorem 3

(i) For \(\lambda > 0 \), \(\mathcal{S}(g, h, \lambda) \subset \mathcal{S}(g, h, 0) \).

(ii) For \(\lambda > 0 \), \(\mathcal{S}(g, h, \lambda) \subset \mathcal{S}(g, h, \gamma) \).

Proof. (i). Let \(f \in \mathcal{S}(g, h, \lambda) \). Then
\[
\frac{1 - \lambda}{z} (f \ast g)(z) + \alpha (f \ast g)'(z) < h(z).
\]
(11)

Suppose \(p(z) = \frac{f(g(z))}{z} \), we have
\[
\alpha z p'(z) = \alpha (f \ast g)'(z) + (1 - \lambda) \left(\frac{f(g(z))}{z} \right) - p(z)
\]
or
\[
p(z) + \alpha z p'(z) = (1 - \lambda) \left(\frac{f(g(z))}{z} \right) + \alpha (f \ast g)'(z).
\]
(12)

By applying Lemma 3, (11) and (12) we have \(p(z) < h(z) \). Then \(\frac{f(g(z))}{z} < h(z) \), or \(f \in \mathcal{P}(g, h, 0) \).

(ii). If \(\gamma = 0 \), then it reduces to part (i). Now let \(\gamma > 0 \) and \(z \in \mathbb{W} \). If \(f \in \mathcal{P}(g, h, \alpha) \), then
\[
(1 - \lambda) \left(\frac{f(g(z))}{z} \right) + \alpha (f \ast g)'(z) \in h(\mathbb{W}).
\]

Also according to part (i), \(\frac{f(g(z))}{z} \in h(\mathbb{W}) \). Moreover
\[
(1 - \lambda) \left(\frac{f(g(z))}{z} \right) + \gamma (f \ast g)'(z) = \left(1 - \frac{\gamma}{1 - \lambda} \right) \left(\frac{f(g(z))}{z} \right) + \frac{\gamma}{1 - \lambda} \left[(1 - \lambda) \left(\frac{f(g(z))}{z} \right) + \alpha (f \ast g)'(z) \right].
\]

Since \(\frac{\gamma}{1 - \lambda} < 1 \) and \(h(\mathbb{W}) \) is convex,
\[
(1 - \gamma) \left(\frac{f(g(z))}{z} \right) + \gamma (f \ast g)'(z) \in h(\mathbb{W}).
\]

This proves that \(f \in \mathcal{P}(g, h, \gamma) \). \(\square \)

Remark. Letting \(g(z) = \frac{z - a}{(1 - \lambda)z} \), Theorem 3 reduces to the corresponding result in [3, Theorem 10].

Theorem 4. Let \(h \) be analytic, univalent and convex in \(\mathbb{W} \), with \(h(0) = 1, \Re (h(z) + \gamma) > 0, z \in \mathbb{W}, \gamma \in \mathbb{C}, \Re (\gamma) < 0 \), \(f \in \mathcal{A}, 0 \leq \lambda \leq 1 \) and
\[
\frac{\gamma(1 - \lambda)f(z) + (1 + \gamma \lambda)zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda + \gamma \lambda)f(z) + \lambda z f'(z) + \gamma(1 - \lambda)(f \ast f)(z)} < h(z).
\]
(13)

Then \(f \in \mathcal{P}(h, \lambda) \).

Proof. Let
\[
p(z) = \frac{(1 - \lambda)f(z) + \lambda z f'(z)}{(1 - \lambda)(f \ast f)(z) + \lambda f'(z)}.
\]

Then
\[
p(z) + \gamma = \frac{(1 - \lambda + \gamma \lambda)f(z) + \lambda z f'(z) + \gamma(1 - \lambda)(f \ast f)(z)}{(1 - \lambda)(f \ast f)(z) + \lambda f'(z)}.
\]
(14)

Making use of the logarithmic differentiation on both sides of relation (14), multiplying the resulting equation by \(z \), and by using the relation (2) we have
\[
\frac{z p'(z)}{p(z) + \gamma} = \frac{\gamma(1 - \lambda)f(z) + (1 + \gamma \lambda)zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda + \gamma \lambda)f(z) + \lambda z f'(z) + \gamma(1 - \lambda)(f \ast f)(z)} - p(z)
\]
or
\[
p(z) + \frac{z p'(z)}{p(z) + \gamma} = \frac{\gamma(1 - \lambda)f(z) + (1 + \gamma \lambda)zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda + \gamma \lambda)f(z) + \lambda z f'(z) + \gamma(1 - \lambda)(f \ast f)(z)}.
\]
(15)

By applying Lemma 2, (13) and (15) we have \(p(z) < h(z) \). So \(f \in \mathcal{P}(h, \lambda) \), by Lemma 1(i).

By putting \(\lambda = \gamma = 0 \) in Theorem 4, we get the following result.

Corollary 7. If \(\frac{f(z)}{z} \) < \(h(z) \), then \(\frac{f(z)}{(f \ast f)(z)} < h(z) \).

Theorem 5. \(f \in \mathcal{P}(h, \lambda) \) if and only if
\[
\frac{1}{2} \left((1 - \alpha) \int_0^z \frac{f(t)}{t} \, dt + z f(z) \right) < h(z), \quad \alpha \geq 0.
\]

Proof. By using the definition of \(L \), it is easy to verify that

\[
(L \ast f)(z) = \int_0^z \frac{f(t)}{t} \, dt.
\]

(16)

Also, \(f \in \mathcal{S}(h, \alpha) \) if and only if

\[
(1 - \alpha) \frac{L(\ast f)(z)}{z} + \alpha(L \ast f)'(z) < h(z).
\]

(17)

The conclusion follows from (2),(16) and (17). \(\square \)

Letting \(\alpha = 0 \) and \(\alpha = 1 \), respectively, in **Theorem 5**, we obtain

Corollary 8. If \(f \in \mathcal{A} \), then

(i) \(f \in \mathcal{S}(h, 0) \) if and only if

\[
\frac{1}{z} \int_0^z \frac{f(t)}{t} \, dt < h(z).
\]

(ii) \(f \in \mathcal{S}(h, 1) \) if and only if

\[
\frac{f(z)}{z} < h(z).
\]

By putting \(h(z) = \frac{1+z}{z} \) in **Corollary 8**, we obtain

Corollary 9.

(i) \(\frac{z(z+2z^2)}{(1-z)^2} \in \mathcal{S} \left(\frac{1+z}{z}, 0 \right) \).

(ii) \(\frac{z(z+2z^2+1)}{1-z^2} \in \mathcal{S} \left(\frac{1+z}{z}, 1 \right) \).

Theorem 6. If \(f \in \mathcal{S}(h, \alpha) \) and

\[
(1 - \alpha)(f(z) - zf'(z)) - \alpha z f''(z) = 0,
\]

(18)

then \(f \in \mathcal{A}(h, \alpha) \).

Proof. Setting

\[
\frac{1}{z} \left[(1 - \alpha)(f(z) + zf'(z)) = \frac{1}{z} \left((1 - \alpha) \int_0^z \frac{f(t)}{t} \, dt + zf(z) \right) \right]
\]

and taking the derivative we obtain (18). Now by applying **Lemma 1(iii)** and **Theorem 5** the proof is complete. \(\square \)

References

